home *** CD-ROM | disk | FTP | other *** search
-
- \magnification = \magstep1
- \font\ninerm=amr9
- \centerline{\bf An Elementary Sum\footnote*{\ninerm A nice little proof of
- a beautiful, well known theorem. This theorem was proved in 1736
- by Leonhard Euler (1707--1783).}}
- \vskip 15 pt
- \nopagenumbers
- \centerline{\sl We show that $\sum_{n=1}^\infty{1\over{n^2}}={{\pi^2}\over{6}}$
- ,}
- \centerline{\sl using only elementary trigonometry and algebra!}
- \vskip 15pt
-
- \noindent
- For the moment fix $n>0$ and for $1\leq
- k \leq n$ set $\theta_k = {{k\pi}\over{(2n + 1)}}$.
- The first step is to use De~Moivre's
- formula to construct a polynomial whose roots are $\cot^2(\theta_k), k = 1,
- \dots , n$. Recall that
- $$\eqalign{\sin[(2n+1)\theta]&=\Im(e^{(2n+1)i\theta})\cr
- &=\Im\{[\cos(\theta) + i \sin(\theta)]^{2n+1}\}\cr
- &=\sum_{k=0}^n(-1)^k{{2n+1}\choose{2k+1}}\sin^{2k+1} (\theta)\cos^{2(n-k)}
- (\theta)\cr
- &=\Bigl[\sum_{k=0}^n (-1)^k{{2n+1}\choose{2k+1}}\cot^{2(n-k)}(\theta)
- \Bigr]\Bigl[\sin^{2n+1}(\theta)\Bigr]\cr}$$
- Since $\sin({{k\pi}\over{2n+1}})\neq 0$ for $k=1,\dots,n$, the roots of
- $p(x)=\sum_{k=0}^n{{2n+1}\choose{2k+1}} (-1)^kx^{n-k}$ are exactly $\cot^2(
- \theta_k)$.
-
- For any polynomial $p(x)=a_nx^n+a_{n-1} x^{n-1} + \dots + a_0$, the sum of the
- roots is equal to ${a_{n-1}}/{a_n}$. Therefore,
- $$\sum_{k=1}^n \cot^2(\theta_k)={{{2n+1}\choose{3}}\over{{2n+1}\choose{1}}}=
- {{(2n+1)2n(2n-1)}\over{3\cdot2\cdot(2n+1)}}={{n(2n-1)}\over{3}}.$$
- $$\sum_{k=1}^n\csc^2(\theta_k)=\sum_{k=1}^n 1-\cot^2(\theta_k)=
- {{2(n+1)n}\over3}.
- $$
- Also on $[0,1]$, we know that $\tan(x) \geq x \geq \sin(x)$. Thus,
- $$\tan(\theta_k)\geq \theta_k \geq \sin(\theta_k)$$
- $$\cot^2(\theta_k)\leq {1\over{\theta_k^2}}\leq\csc^2(\theta_k)$$
- $${{n(2n-1)}\over{3}}\leq\sum_{k=1}^n{1\over{\theta_k^2}}
- \leq{{2n(n+1)}\over3}$$
- $${{\pi^2 n(2n-1)}\over{3(2n+1)^2}}\leq\sum_{k=1}^n{1\over{k^2}}\leq
- {{\pi^2 2n(n+1)}\over{3(2n+1)^2}}$$
- An application of the sandwich theorem completes the proof:
- $$\lim_{n\to\infty}\sum_{k=1}^n {1\over{k^2}}={{\pi^2}\over6}.$$
- \bye
- %
- % This example was typeset using TeX from Stanford University,
- % a QMS Lasergrafix Printer, and a driver from TAMU TUG.
- % For more information contact:
- % Norman W. Naugle Quality Micro Systems
- % P.O. Box 2736 1 Magnum Pass
- % College Station, TX 77841 Mobile, Alabama 36689
- % (409) 845-3104 (205) 633-4300
-